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ABSTRACT

The cytoskeleton orchestrates many processes in
plant development, including division and control of
the direction of cell expansion, and is therefore cen-
tral in the coordination of plant growth. There are a
number of situations in which there is a precise
alignment of the cytoskeleton, in particular micro-
tubules, between neighboring cells. However, it is
not known how these intercellular alignments are
brought about. We discuss the possibility that the
intercellular alignments are due to individual cells
each responding in turn to an external orienting
vector, without a need for direct communication be-
tween cells. Alternatively, there may be information

exchange between the cells about the orientation of
the cytoskeleton to allow for coordination. This ex-
change could take place directly via the plasmodes-
mata or more indirectly through the intervening cell
wall. The final possibility, discussed here, is that ori-
entation of the cytoskeleton in neighboring cells is
coordinated via direct continuity of the cytoskeleton
between neighboring cells, presumably via the plas-
modesmata.
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INTRODUCTION

The main components of the plant cytoskeleton, mi-
crotubules and actin, play a central role in cell divi-
sion, cell expansion, and intercellular communica-
tion in the plant (for review see Kost and others
1999; Meagher and Williamson 1994). The coordi-
nation of these processes across tissues and organs is
thought to be necessary for correct plant morpho-
genesis. There are a number of situations in which
there is a direct intercellular alignment of the mi-
crotubules and sometimes actin in neighboring cells
or even across tissues. Here we outline some ex-
amples of these intercellular alignments and explore
the possible mechanisms involved in orchestrating
them.

INTERCELLULAR ALIGNMENTS OF THE
CYTOSKELETON

In plant cells expanding along their entire length,
that is, not undergoing tip growth, during inter-
phase the microtubules are arranged in the cortex of
the cell in a parallel alignment perpendicular to the
axis of expansion (Figure 1A). There is strong evi-
dence that this alignment of microtubules controls
the precise alignment of deposition of the cellulose
microfibrils in the cell wall (Cyr 1994; Williamson
1991; Wymer and Lloyd 1996) and subsequently the
direction of cell expansion. In many tissues, all the
cells are expanding in a coordinated fashion so that
in longitudinal sections in the plane of expansion
the microtubules are seen as transverse arrays across
the tissue (Figure 1B). Sections through cell walls
show microtubule labeling in a symmetrical pattern
on either side of the wall (Figure 1C; Ueda and Mat-
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Figure 1. (A) High-resolution scanning electron microscope image of a fractured cortical cell in an onion root tip
(prepared as described in Vesk and others (2000)). Much of the cell contents and plasma membrane have been lost during
preparation but clear transverse arrays of cortical microtubules (MT) remain closely associated with the cell wall (CW).
Occasionally, microtubules can be seen terminating at the cell wall (arrowhead). (B–E) Immunofluorescent labeling of
microtubule arrays. Microtubules form transverse arrays across cortical tissues in pea root tips (B). On the side walls of
cortical cells in maize roots, there is close alignment of microtubules on opposite sides of the wall (C). Following wounding
of pea roots, microtubules realign to form arrays parallel to the edge of a wound (asterisk) (D). In the epidermal cells of
leaf primordia in tangled 1 mutant of maize, the microtubules in abnormally shaped cells often are co-aligned with those
of their neighboring cells (E). Scale bars: (A) 2 µm, (B–E) 10 µm. (D) is reprinted with permission from Hush and others
(1990), (C) was provided by John Gardiner, and (E) is reprinted with permission from Cleary and Smith (1998).
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suyama 2000), indicating co-alignment of microtu-
bules in parallel arrays in adjoining cells.

The intercellular alignments in tissue undergoing
coordinated expansion could simply reflect the fact
that the cells have a similar shape and orientation.
The intercellular alignments are more striking when
the microtubules develop new orientations such as
occurs during the establishment of growth axes dur-
ing the development of leaf primordia (Hardham
and others 1980; Marc and Hackett 1989). These
microtubules form continuous hoops, transcending
cell boundaries, and establishing cellulose mi-
crofibril deposition that leads to cylindrical expan-
sion of groups of cells.

Although these examples are programmed devel-
opmental changes, unprogrammed changes in the
direction of growth, such as occurs following
wounding, also are preceded by remarkable reorien-
tations, with the microtubules precisely aligned be-
tween cells (Hush and others 1990). In pea roots,
microtubules realign parallel to the edge of a punc-
ture by 5 hours after wounding (Figure 1D). The
microtubule alignment appears to transcend cell
boundaries. Thus, microtubules can change from
transverse to oblique or longitudinal depending
upon their location relative to the wound. This re-
orientation establishes a new direction of expansion
of the cells surrounding the wound such that they
expand inward toward the center of the wound to
replace the tissue lost.

Attempts to understand the control of cell divi-
sion and morphogenesis have focused on mutants in
which these processes have been disrupted. One
such mutant is tangled 1, in which the spatial control
of cell division in maize leaf development is dis-
rupted (Smith and others 1996). Although this leads
to abnormally shaped cells, the mutant leaves still
have a normal shape. The microtubules in these ab-
normally shaped cells are often co-aligned with
those of their neighboring cells (Figure 1E). It has
been suggested that there is a regional exchange of
information between cells that helps to orient the
expansion of these abnormally shaped cells to pro-
duce a normal leaf (Cleary and Smith 1998). The
maize mutant warty-1, which has abnormal division
and cell expansion in the leaf epidermis, has also
been hypothesized to have regional communication
between neighboring cells (Reynolds and others
1998).

Some form of regional communication may well
be involved in the positioning of the preprophase
bands of microtubules that establish the site of cell
plate fusion with parent walls. Four-way junctions
of cell walls are generally avoided (for example,
Flanders and others 1990). One exception is in the

unusual case of wound regeneration in which the
new cell walls are inserted side by side parallel to the
edge of the wound (for review see Gunning 1982).

Kennard and Cleary (1997) have suggested that
there is an unknown signal that emanates from the
guard mother cell to influence polarization and mi-
tosis in the surrounding subsidiary mother cells. The
guard mother cell appears to control the organiza-
tion of the cortical actin (Cleary and Mathesius
1996), cytoplasmic actin (Kennard and Cleary
1997), and cortical microtubules (Pickett-Heaps and
Northcote 1966) in the surrounding subsidiary
mother cells.

Our knowledge about intercellular alignment of
actin is not as strong as that for microtubules, prob-
ably because actin is notoriously difficult to pre-
serve. However, there is evidence of co-alignment of
cortical actin and microtubules as well as suggested
roles for actin in establishing and maintaining the
microtubule orientations (for review see Kost and
others 1999) so that an intercellular alignment of
actin could be expected. Indeed, Goodbody and
Lloyd (1990) demonstrated precise realignments of
cortical actin that transcended cell boundaries in the
epidermis of Tradescantia leaf following a wound.

These examples of intercellular coordination in
cytoskeletal orientations suggest that intercellular
signaling is taking place. However, it should be
noted that there are also situations in which neigh-
boring cells have no coordination in cytoskeletal
alignment. One notable example of this is the azuki
bean epicotyl epidermis in which microtubule align-
ment alternates among transverse, oblique, and lon-
gitudinal in individual cells, but is not coordinated
between neighboring cells (Takesue and Shibaoka
1998). It may be that this tissue is able to turn off the
communication pathway that is normally in opera-
tion. There are also sites of discontinuities in micro-
tubule alignment at the apical meristem as the leaf
primordia are initiated (Marc and Hackett 1989).

HOW IS INTERCELLULAR ALIGNMENT
BROUGHT ABOUT?
Cells May Respond to a Common Gradient

The co-alignment of microtubules in neighboring
cells may simply reflect the fact that the individual
cells are responding to a common gradient (for re-
view see Hush and Overall 1996) generated at the
level of the whole plant or tissue.

The minute electrical fields that are generated
around plant tissues (for review see Nuccitelli 1990)
are an attractive candidate as an orienting signal for
microtubules. The precise realignment of microtu-
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bules parallel to the edge of a wound in pea roots
(Hush and others 1990) may well be mediated by
the electric gradients generated in tissue by wound
currents (Hush and Overall 1989). Indeed, small ap-
plied electric fields orient microtubules perpendicu-
lar to the field in plant organs (Hush and Overall
1991), cells (White and others 1990), and callus
(Blackman and Overall 1995). In the case of the
callus, microtubules realign to the electric field, ir-
respective of cell orientation and shape. Eventually,
this new alignment generates coordinated cell ex-
pansion within the callus.

Mechanical vectors generated by turgor pressure,
growth, and shape of the organ are also present in
plants. The orientation of microtubules appears to be
sensitive to the mechanical environment of the cell
(Cleary and Hardham 1993; Fischer and Schopfer
1998; Hush and Overall, 1991; Wymer and others
1996). In addition, isolated plant cells are able to
determine a shear-free orientation for insertion of
new walls (Lynch and Lintilhac 1997), presumably
preceded by a pre-prophase band of microtubules.
The intercellular alignment of microtubules may in-
volve microtubules responding to a tissue-wide me-
chanical environment (for review see Hejnowicz
and others 2000). Alternatively, it may be that in-
dividual cells exert physical forces on their neigh-
bors and that the mechanical signals for coordina-
tion of cytoskeletal alignment could be quite local-
ized. Localized pressure on an individual cell causes
nuclear migration to the site of pressure (Kennard
and Cleary 1997). The precisely orchestrated actin-
based migrations of nuclei during guard cell forma-
tion has been suggested to involve a physical signal
from the guard mother cell to the subsidiary cells
(Kennard and Cleary 1997).

Plant hormones can affect microtubule orienta-
tion (for review see Hush and Overall 1996). Thus,
intercellular alignments may reflect a particular con-
centration of a hormone in a group of cells. How-
ever, it is difficult to understand how the precise
realignments of microtubules around a pea root
wound (Hush and others 1990) could be generated
by the distribution of a hormone.

Signals May Pass Between Cells Via the
Plasmodesmata

The cytoplasm and endoplasmic reticulum (ER) of
adjoining cells are continuous via the connecting cy-
lindrical membrane-lined channels known as plas-
modesmata (Figure 2A–D) (for review see Overall
1999). The size of molecules that can pass through
plasmodesmata depends upon the species, tissue,
and developmental and physiological state of the tis-

sue (for review see van Bel and others 1999). This
size ranges from small molecules around 600Da
(Robards and Lucas 1990) to GFP fusion proteins in
the order of 50kDa (Crawford and Zambryski 2000;
Oparka and others 1999). In plants, positional infor-
mation, rather than cell lineage, determines the fate
of cells (Szymkowiak and Sussex 1992; van den
Berg and others 1995). There is an expanding body
of evidence that developmental signals such as the
KNOTTED 1 protein (Jackson and others 1994; Lu-
cas and others 1995) and LEAFY protein (Sessions
and others 2000) pass from cell to cell via plas-
modesmata. Given this, it is possible that an as yet
unidentified signal passes through plasmodesmata
to either control cytoskeletal orientation or provide
information about the orientation in neighboring
cells.

There is currently no direct evidence to support
this suggestion but there are some examples in
which changes in the cytoskeleton in adjacent cells
are associated with changes in intercellular commu-
nication. For example, wholesale realignment of
cortical microtubules in tobacco thin cell layers
(Wilms and Derksen 1988) is accompanied by an
increase in the level of intercellular communication
(Cantrill pers. comm.). In some tissues, cells that are
dividing synchronously remain in communication
whereas asynchronous divisions involve communi-
cation isolation (Ehlers and Kollman 2000; Kwiat-
kowska and Maszewski 1986).

Signals May Pass Between Cells Via the Cell
Wall

The plant cell wall is also a pathway for develop-
mental signals (Brand and others 2000; Fletcher and
Meyerowitz 2000) and signals that elicit a defense
response (Chappell and others 1997). The signaling
molecules may involve cell wall components such as
arabinogalactan proteins or oligosaccharides (for re-
view see Wojtaszek 2000). This opens the possibility
that signals that orchestrate the co-alignment of mi-
crotubules in adjacent cells could move through the
cell wall.

However, the one-to-one alignment of the cyto-
skeleton in neighboring cells, as illustrated in Figure
1C, suggests that some form of short-range signaling
is taking place. The cortical microtubules and actin
appear to be closely anchored to the cell membrane
and possibly through to the cell wall (Figure 2E,F).
The cytoskeleton may be anchored via integrin-like
molecules (Wayne and others 1992) or microtu-
bule-associated proteins such as the 90kDa protein
identified by Marc and others (1996). The strength
of the plasma membrane attachment to the cell wall
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Figure 2. (A,B) Transmission electron micrographs of plasmodesmata from Azolla root tips. In the longitudinal view, (A),
the plasma membrane (PM) surrounding the plasmodesma can be seen to be continuous between neighboring cells. The
endoplasmic reticulum (ER) in the neighboring cells is continuous through the plasmodesma. (B), a transverse image
shows the cell membrane clearly delimiting the plasmodesma; the ER forms a tightly furled cylinder. There is a mottled
layer between the ER and the plasma membrane. (C–F) and (I) are high-resolution scanning electron microscope images
of cortical cells in onion root tips (prepared as described by Vesk and others (2000)). (C) Figure shows a fracture through
the cell wall (asterisks), several plasmodesmata (arrows) joining the two adjacent cells, and the plasma membrane (PM).
(D) A higher magnification of the box in (C) showing fine connections between cells (arrowhead). Actin microfilaments
(arrows) (E) and microtubules (arrows) (F) remain closely associated with the plasma membrane and the underlying cell
wall. (G,H) Adjacent confocal laser scanning microscope optical sections of inner epidermal peels of Hordeum vulgare
stained with rhodamine-phalloidin, showing actin filaments and fluorescent pit fields (arrows). (I) Sites of attachment
(arrowheads) of Hechtian strands to the cell wall (CW) in plasmolyzed cells. Scale bars: (A) 25 nm, (B) 10 nm, (C–F, I)
100 nm, (G,H) 5 µm. (A,B) Reprinted with permission from Overall and others (1982), (C) reprinted with permission from
Vesk and others (2000) and (G,H) reprinted with permission from White and others (1994).
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at particular sites, not only at plasmodesmata, is evi-
denced in plasmolyzed cells where Hechtian strands
anchor to the cell wall (Figure 2I, Lang-Pauluzzi
1999; Oparka and others 1994). This cytoskeleton-
cell membrane-cell wall continuum may even con-
tinue between neighboring cells such that the extra-
cellular links to the cytoskeleton may be connected
in an unknown way through to similar links on the
other side of the wall (Figure 3A). There is no direct
evidence for such links but occasionally, in high
resolution scanning electron micrographs, fine con-
nections can be seen along with plasmodesmata
connecting adjacent cells (Figure 2D).

Cytoskeleton May be Continuous Between
Adjacent Cells

The final possibility is that the co-alignment of the
cytoskeleton in adjacent cells is orchestrated by the

direct continuity of the cytoskeleton between neigh-
boring cells. Actin (Figure 2G,H) and myosin have
both been localized to plasmodesmata in the green
alga Chara and other plants (for review, Overall and
others 2000). In models of intercellular movement
of tobacco mosaic virus, the movement protein
bound to the viral RNA is transported on microtu-
bules to the cell periphery and the plasmodesmata
(Reichel and others 1999). Indeed, the movement
protein may even co-assemble with tubulin as it has
a conserved sequence that shows similarity to the
region in tubulin responsible for lateral association
of protofilaments (Boyko and others 2000). As this
association of the movement protein with the mi-
crotubules is critical in the intercellular spread of the
viral RNA, there may be some association of the
microtubules with the plasmodesmata. However,
though tubulin is found in wall extracts containing
plasmodesmata but not in extracts lacking plas-
modesmata (Blackman and Overall, 1998), there is
no specific immunolocalization of tubulin to plas-
modesmata. A rather unlikely possibility is that mi-
crotubules or actin actually cross the cell wall but
not within plasmodesmata (Figure 3C). There is no
evidence for elements of the dimensions of actin or
tubulin seen crossing between adjacent cells along-
side the plasmodesmata (compare Figures 2C-D
with Figures 2E-F). For microtubules to show pre-
cise co-alignment in sections such as in Figures 1B
and D, the microtubules would need to pass into
neighboring cells along the edges of the cell. A single
microtubule can be seen attached to the cell wall in
just this position in Figure 1A, but there is no evi-
dence for intercellular continuity.

CONCLUSION

Intercellular co-alignment of the cytoskeleton is
widespread but our knowledge of how this align-
ment is orchestrated is limited. The challenge now is
to determine if there is a relationship between the
level and nature of intercellular communication and
the intercellular co-alignment of the cytoskeleton.
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